Package index
-
exampleData1
- Projoint Example Data Set 1: Building Conjoint with a Repeated, Flipped Task
-
exampleData2
- Projoint Example Data Set 2: Building Conjoint with a Repeated, Unflipped Task
-
exampleData3
- Projoint Example Data Set 3: Building Conjoint without a Repeated Task
-
out1_arranged
- Reorganized Projoint Example Data Set 1
-
exampleData1_labelled_tibble
- Projoint Example Data Set 1: "labelled tibble"
-
read_Qualtrics()
- Read and re-format a Qualtrics csv (choice text)
-
read_labels()
- Reads in a CSV of reordered attributes and levels, and applies it to a
projoint_data
object.
-
reshape_projoint()
- Reshapes survey response data for conjoint analysis
-
make_projoint_data()
- Make a projoint_data object using a labelled tibble (data frame)
-
save_labels()
- Save the attributes and levels, and their order, from a conjoint data set, to a CSV file.
-
set_qoi()
- Set the quantities of interest
-
predict_tau()
print(<projoint_tau>)
summary(<projoint_tau>)
- Estimate tau when there is no repeated task.
-
projoint()
print(<projoint_results>)
summary(<projoint_results>)
- Analyze a conjoint data set and correct for measurement error
-
plot(<projoint_results>)
- Plot all MMs or AMCEs
-
plot(<projoint_tau>)
- Visualize the results of the extrapolation method for estimating tau.