Analyze a conjoint data set and correct for measurement error
projoint.Rd
This main function analyzes a conjoint data set and produces measurement error-corrected estimates of either marginal means or average marginal component effects, ready for plotting.
It accepts a projoint_data
object, and optionally a projoint_qoi
object for users who wish to specify more complex quantities of interest.
Usage
projoint(
.data,
.qoi = NULL,
.by_var = NULL,
.structure = "profile_level",
.estimand = "mm",
.se_method = "analytical",
.irr = NULL,
.remove_ties = TRUE,
.ignore_position = NULL,
.n_sims = NULL,
.n_boot = NULL,
.weights_1 = NULL,
.clusters_1 = NULL,
.se_type_1 = "classical",
.weights_2 = NULL,
.clusters_2 = NULL,
.se_type_2 = "classical"
)
# S3 method for projoint_results
print(x, ...)
# S3 method for projoint_results
summary(object, ...)
Arguments
- .data
A
projoint_data
object- .qoi
A
projoint_qoi
object. IfNULL
, defaults to producing all MMs and all AMCEs.- .by_var
A dichotomous variable (character) used for subgroup analysis
- .structure
Either
"profile_level"
(default) or"choice_level"
. If.qoi
is set, the value ofstructure
from.qoi
overrides this value.- .estimand
Either
"mm"
for marginal mean or"amce"
for average marginal component effect. If.qoi
is set, the value ofestimand
from.qoi
overrides this value.- .se_method
By default,
c("analytic", "simulation", "bootstrap")
description- .irr
NULL
(default) if IRR is to be calculated using the repeated task. Otherwise, a numerical value- .remove_ties
Logical: should ties be removed before estimation? Defaults to
TRUE
.- .ignore_position
NULL (default) if
.structure = "choice_level"
. Set to TRUE if you ignore the position of profile (left or right); FALSE if the relative positioning of profiles matters for analysis. If.structure = "choice_level"
and this argument isNULL
, it is automatically reset toTRUE
.- .n_sims
The number of simulations. Relevant only if
.se_method == "simulation"
- .n_boot
The number of bootstrapped samples. Relevant only if
.se_method == "bootstrap"
- .weights_1
the weight to estimate IRR (see
lm_robust
):NULL
(default)- .clusters_1
the clusters to estimate IRR (see
lm_robust
):NULL
(default)- .se_type_1
the standard error type to estimate IRR (see
lm_robust
):"classical"
(default)- .weights_2
the weight to estimate MM or AMCE (see
lm_robust
):NULL
(default)- .clusters_2
the clusters to estimate MM or AMCE (see
lm_robust
):NULL
(default)- .se_type_2
the standard error type to estimate MM or AMCE (see
lm_robust
):"classical"
(default)- x
A
projoint_results
object- ...
Optional arguments; currently none accepted
- object
A
projoint_results
object
Value
A projoint_results
object
Examples
library(projoint)
data("exampleData1")
head(exampleData1)
#> # A tibble: 6 × 185
#> ResponseId choice1_repeated_fli…¹ choice1 choice2 choice3 choice4 choice5
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 R_1M3TDihZzq9z… Community B Commun… Commun… Commun… Commun… Commun…
#> 2 R_3HtXzkcSSlfi… Community B Commun… Commun… Commun… Commun… Commun…
#> 3 R_yjYj0jtOY98X… Community B Commun… Commun… Commun… Commun… Commun…
#> 4 R_1dKd05O6FTOV… Community B Commun… Commun… Commun… Commun… Commun…
#> 5 R_1otDp642wWYl… Community A Commun… Commun… Commun… Commun… Commun…
#> 6 R_2BnD3fuJMRKZ… Community A Commun… Commun… Commun… Commun… Commun…
#> # ℹ abbreviated name: ¹choice1_repeated_flipped
#> # ℹ 178 more variables: choice6 <chr>, choice7 <chr>, choice8 <chr>,
#> # race <chr>, party_1 <chr>, party_2 <chr>, party_3 <chr>, party_4 <chr>,
#> # ideology <chr>, honesty <chr>, `K-1-1` <chr>, `K-1-1-1` <chr>,
#> # `K-1-2` <chr>, `K-1-1-2` <chr>, `K-1-3` <chr>, `K-1-1-3` <chr>,
#> # `K-1-4` <chr>, `K-1-1-4` <chr>, `K-1-5` <chr>, `K-1-1-5` <chr>,
#> # `K-1-6` <chr>, `K-1-1-6` <chr>, `K-1-7` <chr>, `K-1-1-7` <chr>, …
outcomes <- paste0("choice", seq(from = 1, to = 8, by = 1))
outcomes <- c(outcomes, "choice1_repeated_flipped")
reshaped_data <- reshape_projoint(
.dataframe = exampleData1,
.outcomes = outcomes)
projoint(reshaped_data)
#> [A projoint output]
#> Estimand: mm
#> Structure: profile_level
#> IRR: Estimated
#> Tau: 0.1721281
#> Remove ties: TRUE
#> SE methods: analytical