Projoint Example Data Set 1: "Labelled Tibble"
Source:R/exampleData1_labelled_tibble.R
exampleData1_labelled_tibble.Rd
A cleaned tibble where each attribute corresponds to a separate column with a descriptive attribute name. The unit of observation is each of two profiles in each task for each respondent.
Usage
data(exampleData1_labelled_tibble)
Format
A tibble with 6,400 rows and 14 columns. Contains survey responses including outcome choices and conjoint attribute values (columns typically named with a `K-*-*` convention).
Details
This dataset is intended for illustrating reading, reshaping, and
analysis workflows in projoint. Column names are compatible with
reshape_projoint()
.
Examples
# Load the data
data(exampleData1_labelled_tibble)
# Basic inspection (fast and always runnable)
head(exampleData1_labelled_tibble)
#> # A tibble: 6 × 14
#> id task profile selected selected_repeated `School Quality`
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 R_00zYHdY1te1Qlrz 1 1 1 1 9 out of 10
#> 2 R_00zYHdY1te1Qlrz 1 2 0 0 5 out of 10
#> 3 R_00zYHdY1te1Qlrz 2 1 1 NA 9 out of 10
#> 4 R_00zYHdY1te1Qlrz 2 2 0 NA 9 out of 10
#> 5 R_00zYHdY1te1Qlrz 3 1 1 NA 5 out of 10
#> 6 R_00zYHdY1te1Qlrz 3 2 0 NA 9 out of 10
#> # ℹ 8 more variables: `Violent Crime Rate (Vs National Rate)` <chr>,
#> # `Racial Composition` <chr>, `Housing Cost` <chr>,
#> # `Presidential Vote (2020)` <chr>,
#> # `Total Daily Driving Time for Commuting and Errands` <chr>,
#> # `Type of Place` <chr>, race <fct>, ideology <fct>
dim(exampleData1_labelled_tibble)
#> [1] 6400 14
# Optional: quick structure peek (names only)
names(exampleData1_labelled_tibble)
#> [1] "id"
#> [2] "task"
#> [3] "profile"
#> [4] "selected"
#> [5] "selected_repeated"
#> [6] "School Quality"
#> [7] "Violent Crime Rate (Vs National Rate)"
#> [8] "Racial Composition"
#> [9] "Housing Cost"
#> [10] "Presidential Vote (2020)"
#> [11] "Total Daily Driving Time for Commuting and Errands"
#> [12] "Type of Place"
#> [13] "race"
#> [14] "ideology"