Estimate tau when there is no repeated task.
predict_tau.Rd
Given an output from projoint_data
, this function uses the extrapolation method to produce an estimate of intra-coder reliability (IRR).
Arguments
- .data
A
projoint_data
object, outputted fromreshape_projoint
- .title
The title of a figure
- x
An object of class
projoint_tau
derived frompredict_tau
- ...
Optional arguments; currently none accepted
- object
An object of class
projoint_tau
derived frompredict_tau
Value
A projoint_tau
object containing the estimate of tau and a figure visualizing the extrapolation method.
A tibble showing IRR as profile similarity changes. The value of predicted
when x=0
is the estimated IRR.
Examples
library(projoint)
library(stringr)
## Example 1: repeated, flipped task
data("exampleData1")
head(exampleData1)
#> # A tibble: 6 × 185
#> ResponseId choice1_repeated_fli…¹ choice1 choice2 choice3 choice4 choice5
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 R_1M3TDihZzq9z… Community B Commun… Commun… Commun… Commun… Commun…
#> 2 R_3HtXzkcSSlfi… Community B Commun… Commun… Commun… Commun… Commun…
#> 3 R_yjYj0jtOY98X… Community B Commun… Commun… Commun… Commun… Commun…
#> 4 R_1dKd05O6FTOV… Community B Commun… Commun… Commun… Commun… Commun…
#> 5 R_1otDp642wWYl… Community A Commun… Commun… Commun… Commun… Commun…
#> 6 R_2BnD3fuJMRKZ… Community A Commun… Commun… Commun… Commun… Commun…
#> # ℹ abbreviated name: ¹choice1_repeated_flipped
#> # ℹ 178 more variables: choice6 <chr>, choice7 <chr>, choice8 <chr>,
#> # race <chr>, party_1 <chr>, party_2 <chr>, party_3 <chr>, party_4 <chr>,
#> # ideology <chr>, honesty <chr>, `K-1-1` <chr>, `K-1-1-1` <chr>,
#> # `K-1-2` <chr>, `K-1-1-2` <chr>, `K-1-3` <chr>, `K-1-1-3` <chr>,
#> # `K-1-4` <chr>, `K-1-1-4` <chr>, `K-1-5` <chr>, `K-1-1-5` <chr>,
#> # `K-1-6` <chr>, `K-1-1-6` <chr>, `K-1-7` <chr>, `K-1-1-7` <chr>, …
outcomes <- paste0("choice", seq(from = 1, to = 8, by = 1))
outcomes1 <- c(outcomes, "choice1_repeated_flipped")
reshaped_data <- reshape_projoint(
.dataframe = exampleData1,
.outcomes = outcomes1)
tau1 <- predict_tau(reshaped_data)
tau1
#> [1] "Tau estimated using the extrapolation method: 0.743"
## Example 2: repeated, unflipped task
data("exampleData2")
head(exampleData2)
#> # A tibble: 6 × 185
#> ResponseId choice1_repeated_not…¹ choice1 choice2 choice3 choice4 choice5
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 R_1M3TDihZzq9z… Community A Commun… Commun… Commun… Commun… Commun…
#> 2 R_3HtXzkcSSlfi… Community A Commun… Commun… Commun… Commun… Commun…
#> 3 R_yjYj0jtOY98X… Community A Commun… Commun… Commun… Commun… Commun…
#> 4 R_1dKd05O6FTOV… Community A Commun… Commun… Commun… Commun… Commun…
#> 5 R_1otDp642wWYl… Community B Commun… Commun… Commun… Commun… Commun…
#> 6 R_2BnD3fuJMRKZ… Community B Commun… Commun… Commun… Commun… Commun…
#> # ℹ abbreviated name: ¹choice1_repeated_notflipped
#> # ℹ 178 more variables: choice6 <chr>, choice7 <chr>, choice8 <chr>,
#> # race <chr>, party_1 <chr>, party_2 <chr>, party_3 <chr>, party_4 <chr>,
#> # ideology <chr>, honesty <chr>, `K-1-1` <chr>, `K-1-1-1` <chr>,
#> # `K-1-2` <chr>, `K-1-1-2` <chr>, `K-1-3` <chr>, `K-1-1-3` <chr>,
#> # `K-1-4` <chr>, `K-1-1-4` <chr>, `K-1-5` <chr>, `K-1-1-5` <chr>,
#> # `K-1-6` <chr>, `K-1-1-6` <chr>, `K-1-7` <chr>, `K-1-1-7` <chr>, …
outcomes2 <- c(outcomes, "choice1_repeated_notflipped")
reshaped_data <- reshape_projoint(
.dataframe = exampleData2,
.outcomes = outcomes2,
.flipped = FALSE)
tau2 <- predict_tau(reshaped_data)
tau2
#> [1] "Tau estimated using the extrapolation method: 0.743"
## Example 3: no repeated task
data("exampleData3")
head(exampleData3)
#> # A tibble: 6 × 184
#> ResponseId choice1 choice2 choice3 choice4 choice5 choice6 choice7 choice8
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 R_1M3TDihZzq9… Commun… Commun… Commun… Commun… Commun… Commun… Commun… Commun…
#> 2 R_3HtXzkcSSlf… Commun… Commun… Commun… Commun… Commun… Commun… Commun… Commun…
#> 3 R_yjYj0jtOY98… Commun… Commun… Commun… Commun… Commun… Commun… Commun… Commun…
#> 4 R_1dKd05O6FTO… Commun… Commun… Commun… Commun… Commun… Commun… Commun… Commun…
#> 5 R_1otDp642wWY… Commun… Commun… Commun… Commun… Commun… Commun… Commun… Commun…
#> 6 R_2BnD3fuJMRK… Commun… Commun… Commun… Commun… Commun… Commun… Commun… Commun…
#> # ℹ 175 more variables: race <chr>, party_1 <chr>, party_2 <chr>,
#> # party_3 <chr>, party_4 <chr>, ideology <chr>, honesty <chr>, `K-1-1` <chr>,
#> # `K-1-1-1` <chr>, `K-1-2` <chr>, `K-1-1-2` <chr>, `K-1-3` <chr>,
#> # `K-1-1-3` <chr>, `K-1-4` <chr>, `K-1-1-4` <chr>, `K-1-5` <chr>,
#> # `K-1-1-5` <chr>, `K-1-6` <chr>, `K-1-1-6` <chr>, `K-1-7` <chr>,
#> # `K-1-1-7` <chr>, `K-1-2-1` <chr>, `K-1-2-2` <chr>, `K-1-2-3` <chr>,
#> # `K-1-2-4` <chr>, `K-1-2-5` <chr>, `K-1-2-6` <chr>, `K-1-2-7` <chr>, …
reshaped_data <- reshape_projoint(
.dataframe = exampleData3,
.outcomes = outcomes,
.repeated = FALSE)
tau3 <- predict_tau(reshaped_data)
tau3
#> [1] "Tau estimated using the extrapolation method: 0.743"